Extensions 1→N→G→Q→1 with N=C32 and Q=D4:S3

Direct product G=NxQ with N=C32 and Q=D4:S3
dρLabelID
C32xD4:S372C3^2xD4:S3432,475

Semidirect products G=N:Q with N=C32 and Q=D4:S3
extensionφ:Q→Aut NdρLabelID
C32:1(D4:S3) = He3:2D8φ: D4:S3/C4D6 ⊆ Aut C32726+C3^2:1(D4:S3)432,79
C32:2(D4:S3) = He3:3D8φ: D4:S3/C4D6 ⊆ Aut C327212+C3^2:2(D4:S3)432,83
C32:3(D4:S3) = C33:D8φ: D4:S3/C6D4 ⊆ Aut C32244C3^2:3(D4:S3)432,582
C32:4(D4:S3) = He3:6D8φ: D4:S3/D4S3 ⊆ Aut C327212+C3^2:4(D4:S3)432,153
C32:5(D4:S3) = He3:7D8φ: D4:S3/D4S3 ⊆ Aut C32726C3^2:5(D4:S3)432,192
C32:6(D4:S3) = C33:7D8φ: D4:S3/C12C22 ⊆ Aut C3272C3^2:6(D4:S3)432,437
C32:7(D4:S3) = C33:9D8φ: D4:S3/C12C22 ⊆ Aut C32484C3^2:7(D4:S3)432,457
C32:8(D4:S3) = C3xC3:D24φ: D4:S3/C3:C8C2 ⊆ Aut C32484C3^2:8(D4:S3)432,419
C32:9(D4:S3) = C33:8D8φ: D4:S3/C3:C8C2 ⊆ Aut C3272C3^2:9(D4:S3)432,438
C32:10(D4:S3) = C3xC32:2D8φ: D4:S3/D12C2 ⊆ Aut C32484C3^2:10(D4:S3)432,418
C32:11(D4:S3) = C33:6D8φ: D4:S3/D12C2 ⊆ Aut C32144C3^2:11(D4:S3)432,436
C32:12(D4:S3) = C3xC32:7D8φ: D4:S3/C3xD4C2 ⊆ Aut C3272C3^2:12(D4:S3)432,491
C32:13(D4:S3) = C33:15D8φ: D4:S3/C3xD4C2 ⊆ Aut C32216C3^2:13(D4:S3)432,507

Non-split extensions G=N.Q with N=C32 and Q=D4:S3
extensionφ:Q→Aut NdρLabelID
C32.(D4:S3) = D36:C6φ: D4:S3/D4S3 ⊆ Aut C327212+C3^2.(D4:S3)432,155
C32.2(D4:S3) = D36:S3φ: D4:S3/C12C22 ⊆ Aut C321444C3^2.2(D4:S3)432,68
C32.3(D4:S3) = C9:D24φ: D4:S3/C12C22 ⊆ Aut C32724+C3^2.3(D4:S3)432,69
C32.4(D4:S3) = C3xD4:D9φ: D4:S3/C3xD4C2 ⊆ Aut C32724C3^2.4(D4:S3)432,149
C32.5(D4:S3) = C36.18D6φ: D4:S3/C3xD4C2 ⊆ Aut C32216C3^2.5(D4:S3)432,191

׿
x
:
Z
F
o
wr
Q
<